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A simplified method of determining the molecular correlation energy by two 
separate calculations, one for the internal and one for the non-internal 
correlation energies, is extended to multiconfigurational zeroth-order  
wavefunctions. This extension offers the possibility of deriving correlated 
potential energy curves or surfaces for processes involving configurational 
changes. The internal correlation energy is shown to be correctly determined 
by an MC/CI  procedure combining the use of minimal and extended basis 
sets. An original semi-empirical "atoms-in-molecules" method based on the 
L.C.A.O. expansion of the molecular wavefunction is proposed for the 
non-internal correlation energy calculations. This method is shown to be able 
to overcome some of the shortcomings of a previous populations analysis 
approach. Test calculations concern potential curve parameters 
(De, Te, Re, toe) of the ground and some excited states of the NH, C2, HCN 
and CN molecules. The results are found to be in good agreement with 
corresponding experimental and large CI results. 

Key word: Correlation energy. 

1. Introduction 

We have recently proposed an economical but non-variational method for 
molecular correlation energy calculations [1]. In this method we had calculated 
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separately the internal and non-internal correlation energies, a partition inspired 
by the work of Sinanoglu and coworkers [2]. The internal correlation energy 
had been evaluated by us by means of a CI calculation including all configurations 
resulting from biexcitations with respect to the SCF function within the valence 
orbital space in a minimal basis set. The validity of this approximation had been 
tested by MCSCF/CI calculations using an extended basis set. The non-internal 
correlation energy had been evaluated by an original "atoms-in-molecule" 
method, in which the semi-empirical non internal correlation energies of the 
atoms in the molecule are weighted by their Mulliken population [3]. Dissociation 
energies had been calculated by this method for several di- and polyatomic 
molecules and successfully compared to the experimental values in so far as they 
were available [4]. However, the two parts of the correlation energy had been 
then calculated on the basis of monoconfigurational SCF functions of the bond 
molecule on the one hand and of the dissociation products on the other hand. 
Since we are interested in potential energy hypersurfaces we need to extend our 
method for correct zeroth-order wavefunctions, i.e., for example, wavefunctions 
that describe properly a dissociation process. This will imply the development 
of a new formalism to calculate the non-internal correlation energy. The 
molecules chosen here for our purpose are: NH(X3E- ,a  1A, b 1E+), 
HCN(X 1Z+), C2(X 1E~, a 3IIu), CN(X 2 ~ + ) .  

2. Description of the Method 

2.1. Zeroth-Order Wavefunctions 

As it is well-known, a single Slater determinant is nearly always insufficient to 
describe properly the dissociation behaviour of a molecule. Indeed, the orbitals 
of a monoderminantal wavefunction most often correlate asymptotically with 
orbitals of ionized states of the dissociation products instead of the proper 
Wigner-Witmer partners. Let us take for example the following dissociation 
process of the HCN molecule in its ground 1Z+ state: 

HCN(1E +) -+ H(2S) + CN(2E+). 

It can be shown that the SCF configuration for this state: 
2 2 2 2 2 2 2 xIta = Ilo" 2o- 3o" 4o- 17r+11r_5o- I 

correlates at infinite separation to 

-4)o- l~r+lrr_5o- [ 1(1 2 2 2 2 

of CN-, leading to the ionic dissociation products CN-(1Z +) + H+(1S). Thus if 
the function ~a can be chosen as a "zeroth-order wavefunction" in the vicinity 
of the equilibrium geometry, this is no longer the case at large distances. 
Oppositely, the function xI% = 1(1-4)o-21rr2+llr2_5o-6o'l is a good zeroth-order 
wavefunction for the dissociation products because it correlates to I((1-- 
4)O-217r450")cNlSH[ corresponding to the proper Wigner-Witmer products. 
Therefore it will be convenient to use the biconfigurational wavefunction q* = 
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a ~ a  + b ~ b  as zeroth-order  function in order to describe the portion of the 
potential energy hypersurface relative to that particular dissociation process. It 
is even more convenient to include a third configuration: ~c = [(1-4)0.21~'460.2[ 
in the zeroth-order  wavefunction in order to ensure a smooth change from ~a  
to ~b along the dissociation coordinate. In this particular case, however, ~a  + ~c 
could be sufficient in the MCSCF framework. Similar zeroth-order  wavefunctions 
constructed from dissociative configurations for all the cases studied in this work 
are collected in the Appendix 1. As may be seen these functions are not always 
limited to two configurations; their structure depends on the particular 
degeneracy breakdown which occurs when the product point groups are com- 
bined to form the resulting molecular point group and to the spin projections 
requirements. 

It should be noted that the interest of such dissociative functions is not limited 
to the study of dissociation paths but also to the determination of equilibrium 
geometries and other spectroscopic constants through an improvement of an- 
harmonic terms in the potential expression. 

The best zeroth-order  wavefunction constructed in such a way will be obtained 
in the framework of the MC-SCF method where LCA O  coefficients and configur- 
ation expansion coefficients are simultaneously optimized. Further,  the use of a 
"double-zeta plus polarization" basis set will be imperative in order to obtain 
meaningful energy results. 

2.2. Partition of the Correlation Energy 

If we consider the valence orbital space (also eventually referred to below as 
the"molecu la r  Har t ree-Fock  sea" 1) i.e. the orbitals that asymptotically correlate 
with the valence orbitals of the constituent atoms, one can distinguish three 
types of orbitals depending on their occupancy in the zeroth-order  wavefunction. 
There are respectively the fully, the partially and the unoccupied orbitals. In 
the case of HCN, for example, with the zeroth-order  wavefunction given above, 
we have, in addition to the frozen lo- and 20- orbitals: 

(i) fully occupied orbitals: 30-, 40-, l~- 
(ii) partially occupied orbitals: 5o-, 60. 

(iii) unoccupied valence orbitals: 70-, 2~" 

In the case of a minimal basis set, the valence orbital space coincides with the 
complete orbital space. In a non-minimal basis set, however, there are also the 
unoccupied non-valence orbitals, arising from the SCF procedures. On the basis 
of this partitioning of the orbital space, we extend the open-shell t reatment of 
Silverstone and Sinanoglu (2.a) of the correlation energy. In their work, they 
divided the orbital space into an internal space, constituted of all the orbitals 
fully or partially occupied in the zeroth order wavefunction (and also called 

1 The "valence orbital space" is identical to the "Hartree-Fock sea" except that it does not include 
the core electrons of the atoms constituting the molecule. Since these are always frozen in our MC 
or CI (not SCF) calculations, the two notions are equivalent in the present context. 
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"Hartree-Fock sea") and an external space spanned by the unoccupied orbitals. 
They defined three physically distinct contributions to the correlation energy: 

(1) the internal correlation energy, represented by the complete CI (mono, bi, 
t r i . . ,  substitutions) within the "Hartree-Fock sea" 
(2) the semi-internal correlation energy represented by a CI of n-substitutions 
where at least one electron leaves the "Hartree-Fock sea" and at least one 
remains in it. 
(3) the all-external correlation energy, represented by the CI of n-substitutions 
outside the "Hartree-Fock sea". 

In our calculations we have extended for the molecular case the concept of 
internal space to the valence orbital space, which correlates asymptotically with 
the internal spaces of the constituting atoms, but we have limited the CI expansion 
to the first order of perturbation, i.e. the biexcitations. The monosubstitutions 
play the special role of spin and symmetry polarization. However in the case of 
a fully optimized MC function, the mono-substitutions by unoccupied orbitals 
vanish to the first order, as shown in the generalized Brillouin-Levy-Berthier 
theorem [5]. 

In this paper, as in the preceding ones we calculate separately the internal 
correlation energy and the non-internal (i.e. semi-internal plus all-external) 
correlation energy: 

I NI 
ECORR = ECORR + ECORR. 

2.3. Internal Correlation Energy 

It is clear that the zeroth-order MCSCF energy contains an important part of 
the internal correlation energy. However, since it is not possible to perform the 
complete MCSCF calculation spanning all the biexcitations contributing to the 
internal correlation energy as defined in 2.2, we have tested the possibility of 
evaluating the remaining fraction of the internal correlation energy by means 
of a CI in a minimal basis set, just as we had proposed in the case of a 
monode terminantal wavefunction [1]. 

In the present case however, the double substitutions are of course generated 
with respect to the zeroth-order MC function. This means that, in order to obtain 
the same level in the self consistency conditions using the minimal basis set as 
those using the extended basis set, we perform an equivalent MCSCF calculation 
in the minimal basis set before doing the CI calculation. The validity of the use 
of a minimal basis set will be tested below in the same manner as before i.e. by 
comparison with equivalent calculations using as extended basis sets as possible. 

2.4. Non-Internal Correlation Energy 

2.4.1. Shortcomings of the Population Analysis Approach 

This part of the correlation energy is evaluated by an "atoms-in-molecule" 
method, i.e. a method in which the known semi-empirical non-internal 
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correlation energies (6, 7) of all possible states of a given atom in the molecule 
under study are summed according to their "weights" in the molecule. This 
method is based on the fact that all-external energy consists of transferable 
electron pair energies (2.b). In a previous paper, the weights had been evaluated 
by means of a Mulliken gross population analysis. Thus, for each atom Xi of a 
given molecule the K(X~) possible atomic configurations Sk are weighted by an 
occupation probability: 

P~(x,)= I1 (eo)~(~-P~) ~-~ 
p~X~ 

the sum being taken over all the atomic spinorbitals; Pp is the gross Mulliken 
population of an atomic spinorbital Xv in the molecule, and n ~ equals 1 or 0 
depending on whether the spinorbital is occupied or not in configuration Sk. 
This method while having the advantage of being very simple implies a partial 
loss of the L.S. coupling information of the atomic components as a consequence 
of the use of the density function in place of the wave function itself. In this 
context of population analysis, it is in fact possible to calculate the weight of an 
atomic configuration but not the weight of a particular state arising from that 
configuration. That is why we had previously used averaged non-internal correla- 
tion energies. This shortcoming will have the two following consequences on 
the results. First, term energies between states of different multiplicities tend to 
be improperly predicted. Secondly, improper correlations can appear with a 
multiconfigurational zeroth-order wavefunction. 

To explain the first point, let us take as an example the dissociation of the 3Z-, 
~A and ly+ states of the NH molecule. The three states dissociate into the 2S 
state of H and respectively to the 4S, 2D and 2p states of N arising from the 
same lsE2s22p 3 configuration. It follows that, at their dissociation limit, the 
three states will have the same non-internal correlation energy, equal to the 
averaged value of the lsZ2sE2p 3 configuration. At equilibrium geometry a more 
complex mixture of atomic configurations takes place but one can expect that 
the same type of average will affect the validity of term energies. It is interesting 
to point out that the errors resulting from these average values will to a large 
extent cancel in dissociation energy calculations [1, 4]. 

The second point can be illustrated by considering the simple case of the 
dissociation of the H2 ground state where the zeroth-order biconfigurational 
wavefunction 1/~/2(11(r~1-[lo-~1) must describe at large distance the correct 
dissociation products, i.e. two independent H atoms in 2S states. A population 
analysis carried out on this multiconfigurational function will not reproduce this 
result but will give the erroneous superposition I H - + H .  This result induces, 

I~,NI therefore, an error of ~ cogR (H-) in the calculation of the dissociation energy 
of H2. The loss of information in this case is clearly due to the square of the 
expansion coefficients that occur in the density function. 

In order to keep the symmetry information contained in the wavefunction we 
propose to work directly on the wavefunction itself in the following way. 
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2.4.2. Monodeterminanta l  Approach  

In the L.C.A.O.  context a Slater determinant  

= ]qbl(1)a(1) �9 �9 �9 dP,~(n~)a(n,~)dP,~+l(n,~ + 1)/3 (n~ + 1) 

�9 �9 �9 ~P,~+n~(n~ +nt~)/3(n~ +no)[ 

can be expanded over a linear combination of N Slater determinants  in which 
each molecular orbital qbi(i) is replaced by the atomic orbitals {Xp; P = 1, m} of 
its L.C.A.O.  expansion: 

q~i - ci,xp. 
P 

The number  of terms (N) of the determinantal  expansion is simply the number  
of simultaneous possible combinations of the n~ electrons over  the m components  
of the atomic basis set with those of the n o electrons over  the same basis set, i.e.: 

m!  m! 
N = C n ~ . C ~  ( m - n ~ ) ! n ~ !  ( m - n r  

Obviously this number  includes many combinations that are in fact forbidden 
for reasons of symmetry.  

The expansion can thus be written: 

= 2 E dpqq~pq 
P q 

with 

%~ = Ix . ,"  " x ~ o ~ , "  " ~ l  

and 

dpq = det (Mp) det (~q) 

where Mp is a (n~ x n~) matrix constructed by restricting the L.C.A.O. matrix to 
the n~ molecular spinorbitals and to the no atomic orbitals which define combina- 
tion p. ~q of dimension (n 0 x n0) is the equivalent L.C.A.O. matrix for the/3  
spinorbitals corresponding to combination q. ~pq is of course a polyatomic 
determinant  since the X,k (2pk) belong to the different constituent atoms. 

For  the simplicity of the development ,  let us restrict ourselves to the case of a 
diatomic molecule A-B.  Since we have no data concerning non-internal correla- 
tion energies relative to diatomic (or polyatomic) molecules, we will neglect the 
interatomic interactions and rewrite ~pq as a simple product  of two atomic 
determinants:  

% ~  = ( - 1 ) % l x p , . . .  ~ . ~ q ~  �9 �9 �9 ~ , , ~ l x  I x ~  __, �9 �9 �9 x ~  ~ q , ~ .  �9 �9 �9 . ~ q ~  I 

= % , ,  ( A ) ' % , ~ ,  ( B )  
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where np is the number of permutations necessary to rearrange the electrons on 
atom A and B. Each determinant gl)'pq (A) can be expanded over a linear combina- 
tion of eigenfunctions of  L 2 and S 2 arising from the atomic confgurat ion to 
which this Slater determinant belongs: 

N D  

' trpo(A)= Y~ aP, qF~q(A) 
* = 1  

where ND is the degeneracy of the configuration. Thus we can rewrite the 
diatomic determinant: 

3~ a ,  ax F,  (A)Fx (B). 

A polyatomic function can be written in the same way: 

"t, = E E dpo Y,. . . 2 a  ~ " ' "  ao "~ F ,  " ( A  ) " ' "  Fo ~ ( X )  
p q r p 

or in shorter notation: 

'I~ = E b,(F'  ( A  ) F ' ( B )  . . . F'(X)) 
i 

where the summation over i refers to all the possible products of eigenfunctions 
of the different atoms. 

Finally: 

/., 2 K" 127NI 
U i / , L : ' C O R R  (Fi(A)) 

N I  i A 
E c o R R ( ' I ~ )  - 

r,b~ 
i 

Where N~ E c o a a  (FI(A)) is the known (6, 7) non-internal correlation energy of a 
given ionic or neutral state of the atom A. The renormalization factor, }~i b2e, is 
due to the neglect of overlap between the atomic ~pq. 

As in the case of the population approach, a necessary condition associated with 
such a decomposition of the molecular structure into atomic components in a 
LCAO-con tex t  is that the molecular orbitals have to be expressed unambiguously 
in terms of purely atomic basis orbitals; this is achieved in a minimal basis 
calculation. 

We are now able to describe the non-internal molecular energy in terms of 
weighted atomic contributions where the L.S. coupling information has been 
kept. 

2.4 .2 .  Mu l t i con f i g u ra t i o n a l  L . C . A .  O. A p p r o a c h  

Let us now consider a multiconfigurational expression 

M 

~/~MC = ~ .  Cka~IIk. 
k 
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Each ~k can be treated in the manner described above. Let ~,q be the complete 
set of combinations arising from the M ~k functions: 

' I '=22(T_,  k " C kd pq ) tI'pq 
p q k 

where some of the d~q will vanish since a given ~pq doesn't necessarily arise in 
each ~k. 

In this way the multiconfigurational information is taken into account. 

The formalism is illustrated in Appendix 2 where the simple case of Ilo'22o'[ 
wavefunction of LiH + is developed in some detail. Another illustration is presen- 
ted in Fig. 1 where we have plotted the evolution of the most important atomic 
weights in the dissociation process of NH(aE -) using a MC function containing 
the dissociative configurations. It shows clearly that at large interatomic distances 
the function is entirely composed by N(4S) + H(2S) as desired. In the same figure, 
the evolution NI of  ECORR is also shown. 

0.75 

0.50 

0.25 

Weight  T ~  =====-'-F 
- 0.200 

N(,~S) .,/ ~. ,~ 

0.190 

m N(=D) N-(3p)§ 
2 /. 

"---T 

F " F ~  I 

. ~  L J 
2 4 6 8 

RN~(a.u.) 

NH (3 Z')'-" N (~S) § H ffS) 

0.00 i j RNH{O'U') 
0 6 8 10 

Fig. 1. Evolution of the most important atomic contributions to the non-internal correlation energy 
2 N I  in the course of the dissociation of NH(3E -) ~ N(4S) + H(S). Insert: parallel evolution of ECORR 
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3. Programs and Basis Sets. 

Three  computer programs have been used: 

(1) MC-SCF program ALIS written by Ruedenberg et al. [8] 
(2) CI programs written by Whitten et al. [9] 
(3) yi ECORR program written in our laboratory. 

Two gaussian basis sets were commonly used: 

(i) the "double-zeta plus polarization" quality basis set 6-31G** [10] 
(ii) the minimal basis set STO-3G [11]. 
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4. Results and Discussion 

4.1. Internal Correlation Energy Results 

We present in this section several tests on the validity of the use of a minimal 
basis set CI to calculate the part of the internal correlation energy which has 
not been introduced by the zeroth-order  wavefunction. A comparison of the 
minimal basis set results will be made with the corresponding extended basis set 
results taken as a reference. 

The best way to calculate the internal correlation energy in the sense defined 
above with an extended basis consists in performing a complete MCSCF calcula- 
tion on the configurational space built up by generating all the double excitations 
with respect to the zeroth-order  wavefunction within the valence orbital space. 
Let  us denote this calculation as MCtot(ext), where "ext"  refers to the use of an 
extended basis set. Such calculations are unfortunately limited to very small 
systems, like the NH molecule considered in this work. 

That  is why we will be interested by an alternative two-step MC/CI  procedure 
that we will denote in a general way by the shorthand notation: 
MCi(basis 1)/CI(basis 2). This notation means that in a first step, an MCSCF 
calculation is performed with basis set 1 in a configurational space described by 
the subscript i and, in a second step, an MCSCF/CI  calculation with basis 2 is 
performed using the same MCSCF reference configurations as in the first step. 
If basis 2 is not the same as basis 1 the ACI increment of the second calculation 
is then added to the MCSCF energy of the first calculation. 

The subscript i can take the following values: "0"  referring to the zeroth-order  
wavefunction, " n "  corresponding to a n- configurational space and " to t"  corres- 
ponding to the total biexcitations space. 

As in the case of an SCF zeroth-order  wavefunction [1], we have developed an 
iterative procedure which can provide, in an economical way, a very good 
approximation of the MCtot(ext) results. It consists in the following steps: 

(1) an MC0(ext)/CI(ext) calculation is performed 
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(2) the nl  most important configurations appearing in the CI wavefunction in 
addition to the no configurations of MC0 are included in a new MCSCF configur- 
ational space of order n = no+nl and a new MC,(ext) /CI(ext)  calculation is 
performed 
(3) a set of n2 new dominant configurations is extracted from the last CI 
wavefunction and an MC,,(ext)/CI(ext)  calculation is performed, with n'  = n + n2 
(4) step 3 is iteratively repeated until a limit value is reached, called 
MC~im(ext)/CI(ext), corresponding to the convergence limit of the CI energy. In 
our opinion this limit defines a very good approximation of the MCtot(ext) energy. 

Fig. 2 compares the convergence of this iterative procedure together with the 
corresponding convergence of the MC,(ext)  method in the case of NH(3y~-). It 
appears that the MC/CI  procedure converges more rapidly than the MC one, 
so that, hopefully, we can apply this procedure with success to cases for which 
the MCtot(ext) limit is inaccessible. Such cases are illustrated in Fig. 3 for the 

1 + X Eg and a 3II, states of C2 and in Fig. 4a for the ground state of HCN. We 
also find in these cases a rapid convergence of the MC/CI  procedure which can 
be interpreted by the fact that the valence molecular orbitals are almost fully 
optimized by the MCSCF step even if these orbitals are occupied in only one 
or two configurations of the MCSCF configurational space. In the case of HCN, 
for example, the valence orbitals 7o-, 27rx, 2~-y are not occupied in the zeroth-order  
function. It is necessary to extend the multi-configurational space to at least six 

- 54.97 

- 54.98 

E (a.u.) ] 
I I i 

NH (3T') 
* MCn(ext)  

zx Men (ext) lCI (ext )  

~] MCo(ext) 

r l  
- 54 .99  I I I I 

2 :3 4 5 6 7 

Fig. 2. Compar ison of the MC and M C / C I  convergences with an increase of the number  n of 
configurations included in the MC calculation. NH(3]~ -) at equilibrium geometry;  "ext"  denotes  the 
6 -3 iG**  basis set 
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I 
i '[ I i I I 

- 7&50 I - /  * MCn(ext) 
I I 
I / zx MCn(ext)/Cl(extl 

I ~ B MCo(ext) 

- 75.60 1 ~ , . . . ~ e ~  ~ t~ 

/ I I I I n F n 
15 20 25 30 10 15 20 25 

1 + Fig. 3. Same comparison as in Fig. 2 for the X ~g and a 31]. states of Cz at equilibrium geometries 

configurations to ensure their occupancy. At this level, as can be seen from Fig. 
4a, the MC6(ext)/CI(ext) has nearly reached the value of MClim(ext)/CI(ext). 
However, in the case of C2(1Z +) all the valence orbitals are occupied in the 
zeroth order wavefunction but, as it is obvious in Fig. 3, a very important 
optimization effect is induced by the fifteenth configuration which arises from 
the important 2o .2 ~ zr] replacement. 

Fig 4 introduces the basis set effect in the case of the 1Z+ state of HCN by a 
comparison between the 6-31G** extended and the STO-3G minimal basis sets. 
The three parts of the figure show the convergence of the MC/CI procedure 
respectively for MC,(ext)/CI(ext), MCn (min)/CI(min) and MCn(ext)/CI(min) 
calculations. It appears from Fig. 4b that the minimal basis set induces an 
immediate convergence already reached at the zeroth-order wavefunction level. 
This can be explained by the poor flexibility of the minimal basis set which, as 
a consequence reduces the importance of the MCSCF optimization of the 
unoccupied valence orbitals. 

Since the MCSCF calculations with STO-3G and 6-31G** basis sets behave very 
similarly (Fig. 4a and b), it is not surprising that the MC, (ext)/CI(min) (Fig. 4c) 
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Fig, 4. Basis set comparison of the MC and M C / C I  convergences on the HCN molecule (equilibrium 
geometry). "ex t"  refers to the 6-31G** basis set and "min"  to the STO-3G one 

result is nearly constant for any value of n - n o .  The resulting overestimate of 
I ECORR observed for low n values can be attributed to a polarization effect of 

the minimal basis set CI that disappears with increasing n values since it is 
incorporated in the MCSCF calculation with the minimal basis set. Finally, the 
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Table 1. Electronic energies (in a.u.) calculated at different levels of approximation 
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Method NH(3s -) C2(1]~g) C2(a sIlu) HCN(1E +) CN(2s +) 

MCtot(ext) -54.98110 . . . .  
MCtim(ext)/CI(ext) -54.98110 -75.6069 -75.5885 -93.013 -92.319 
MC0(ext)/CI(min) -54.98222 -75.6186 -75.6046 -93.023 -92.344 

MC,(ex t ) /CI(min)  and MCn(ext)/CI(ext)  curves tend to the same limit. Fig. 4c 
illustrates the validity of this combined use of the two basis sets. 

These results together with similar tests carried out for the other systems studied 
in this work show that the MCn (ext)/CI(min) method gives a good approximation 
of the internal correlation energy already for the lowest values of the number  
of configurations n, and even at the zeroth-order  level. This prompts  us to 
compare  in Table 1 the results obtained at the MClim(ext)/CI(ext) and 
MCo(ext)/CI(min) levels of approximation for the set of systems studied in this 
work. In all cases, the second method gives slightly larger results than the first 
one owing to the polarization effect of the minimal basis set. However  two 
comments  can be made on this point: 

(1) even if one considers absolute values, the approximation seems very good 
in view of the minimal effort it requires. 
(2) for propert ies like dissociation energies, the observed overest imate of E~ORR 
will be more  or less present  along the whole hypersurface and one may expect 
a cancellation of this effect to a large extent. 

4.2. Non-Internal Correlation Energy 

Since the method we propose in Sect. 2.4. is a semi-empirical evaluation of the 
non-internal  correlation energy and since this contribution cannot be calculated 
by means of a CI method which would have to be realised over an infinite 

NI expansion, we are not able to compare  values for ECORR in the same way as 
I we did in the preceding section for ECORR. That  is why we will test the validity 

of our method with the results obtained at the level of total energy calculations. 
Since we know quite well the quality of our E ~ CORR calculations (some of them 
being very accurate as in the case of NH), the comparison of our results with 
experimental  data will give us an indication concerning the quality of our 

ECORR. This is the object  of the next section. semi-empirical calculations for NI 

4.3. Total Energy Results 

4.3.1. The N H  Molecule 

As shown in Sect. 4.1, the N H  molecule is a privileged system for which the 
internal correlation energy can be determined accurately by an MCtot(ext) calcu- 
lation. Indeed, the total configurational spaces to be considered for the 3• , 1A 
and 1E+ states arising f rom the fundamental  configuration, are only composed 
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of 6, 12 and 19 configurations respectively. The use of such accurate internal 
correlation energies will provide us with the possibility to test the validity of the 
method developed in section 2.4 to derive the non-internal correlation energies. 
The formalism has been applied to MC0(STO-3G) wavefunctions to ensure a 
correct dissociation behaviour. 

Equilibrium geometries, vibrational frequencies, dissociation energies and term 
energies, calculated at three levels of approximation, are listed in Table 2. These 
results are compared to the corresponding experimental data [12] and to the 
elaborate results 2 of O'Neil and Schaefer [13] (referred below as O.S.) and of 
Hay and Dunning [14] (referred as H.D.) and for the ground state to the accurate 
CEPA results of Meyer  and Rosmus [18] (M.R.). The Re and o)e values have 
been determined by means of quartic polynomial fittings of the potential curves 
near the minima. The numerical accuracy of the values obtained in that way has 
been checked on the tA state with polynomial fits of higher degree (five, six and 
seven) at the MCtot(ext)+ENI(A) level. At the seventh degree, the values are 
stable and diverge from the values obtained at degree four by an amount  of 
0.0005 a.u. for Re and 1 cm -~ for o)e. 

Let  us first discuss the effect of the progressive inclusion of the correlation energy 
on the results: 

(1) The discrepancies observed at the SCF level are not surprising and their 
nature are well known: too low values for Re and De and too large ~0e values. 
(2) The addition of internal correlation energy at the MCtot(ext) level has for 
consequence an important  improvement of the energy results, but also to over- 
shoot the equilibrium distances and underestimate the frequencies. These pre- 
dictable deformations which correspond to a flattening of the potential energy 
curves, can be attributed to the greater importance of the multiconfigurational 
t reatment in the valence shell configuration space at large internuclear distances 
than at equilibrium ones. The same conclusions apply to the H.D. results, which 
incorporates principally internal correlation and polarization effects. 
(3) Further  inclusion of N~ EcoR~ energies gives a new significant improvement 
of the energy results as well as of the geometrical parameters, which are now 
in good agreement with the experimental data and with the O.S. CI results. The 
shapes of the potential curves are particularly well reproduced, which means 
that the non-internal correlation energies have balanced correctly the correlation 
effects between the equilibrium and dissociation regions. Another  point to be 
emphasized is the term energy value of the 1A state which is close to the 
experimental value. This agreement is particularly interesting since the CI calcu- 
lations of O.S. and H.D. fail to describe correctly this quantity. The conclusion 
of this set of data is that the non-internal correlation energy calculations seem 
quite accurate. 

20.S. results proceed from INO calculations performed on 277 to 418 configurations, depending 
on the state considered. H.D. calculations of GVB(1 + 2) type for the 3X- and 1A states, including 
respectively 2197 and 1054 configurations, and of POL-CI type for the ly+ state, with 259 
configurations 
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Fig. 5 gives an illustration of the calculated potential curves of NH. 

The dissociation and term energies calculated here are also compared in Table 
2 to the corresponding results obtained by applying the method developed in 
the previous work [1] for ECY~RR calculations, based on a Mulliken population 
analysis. Let us call "method B" this last method and "method A" the one 
developed in this work. It can be seen that, as expected on the basis of the 
discussion made in Sect. 2.4, method A reproduces more correctly the term 
energies. Oppositely this method gives lower values for the dissociation energies. 
This is due to the fact that the absolute values of the N1 ECORR are observed to 
be smaller at equilibrium distances in the case of method A, without any 
compensation at infinite separation. However, the difference which appears 
between the M 3 E- 1A E C O R R  of the and states improves the 1A term energy as 
predicted above. It should be emphasized however that the population approach 
(method B) is not to be completely discarded. Indeed, it has been shown to give 
quite good results for dissociation energies of non-trivial systems [1, 4] and this 
at much lesser effort than that of the present LCAO approach. So, we suggest 
the use of method B in conjunction with SCF wavefunctions in the case of large 
polyatomic systems for which only energy differences are needed, without having 
to describe the complete potential surfaces. 

Table 3 illustrates the effect of the introduction of approximate internal correla- 
tion energies calculated at the MC0(ext)/CI(min) level, by comparison to the 
corresponding MCtot(ext) results. The accuracy of the approximate treatment is 
confirmed here also. However it can be pointed out that the use of a minimal 
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Table 3. Comparison between MC and MC/CI procedures in the case of the 3E- 
state of NH 

529 

Property MCtot(ext) + ECNIRR MCo(ext)/CI(min) + E ~ R R  

Re (,~) 1.040 1.038 
toe (cm -1) 3160 3342 
De (eV) 3.06 3.09 

basis set CI produces larger w e values as a consequence of the basis polarization 
effect mentioned above. The related excess of internal correlation energy 
decreases rapidly going from the equilibrium distance to the dissociation limit, 
deforming the potential curve in the sense of an increase of ~oe. 

Finally, we have tested on the 3E- state of NH the validity of the partition of 
N~ 

the correlation energy by a comparison of the ECORR values calculated on the 
basis of different size multiconfigurational wavefunctions. These values are found 
to be -0 .1997  a.u. and -0 .1995  a.u. for a 3 and 6 (total) configurations function 
respectively. This is at least an indication of the validity of the present partition. 

4.3.2. The Cz Molecule 

To proceed further with our tests, we have investigated the X 1E+ and a 3IIu 
states of the C2 molecule which both dissociate to C(~P) + C(3P). The interesting 
fact is that they lie very close in energy to each other (0.09 eV experimentally 
[12]) so that the calculation of term energy of the a 3IIu state is a very demanding 
test. It often happens that elaborate CI or MCSCF calculations lead to the 
conclusion that the a 3IIu should be regarded as the ground state. It is of course 
due to the fact that a difference of 0.09 eV is at the very limit of accuracy of 
the most sophisticated present theoretical models. 

Although the internal correlation energy could be calculated by means of a total 
MCSCF calculation with an accurate program, this would certainly cost a lot. 
The reference for the internal correlation energy will then be determined by the 
limit reached by the iterative MC~im(ext)/CI(ext) procedure. The configurations 
to be included in this MClim were selected at 2.4038 a.u. (which is the 6-31G 

1 + equilibrium geometry of Eg) for both states. The energy threshold was 
0.0003 a.u. 

The values of Re, toe, Te and De calculated at different levels of approximation 
are listed in Table 4. The Re and toe values have been extracted from a quartic 
polynomial analytical expression of the potential curve at the level of internal 
correlation energy calculation (MClim(eXt)/CI(ext) and MC0(ext)/CI(min)) as 
well as at the total energy level (MClim(ext) /CI(ext)+E~RR and 
MCo(ext)/CI(min) + E ~ R r t ) .  As in section 4.3.1. we have checked the numerical 
accuracy of a polynomial fit of degree four, at the MCo(ext) and MCllm(ext) 

1 + levels for both Eg and 3II~ states. This accuracy is, at the worst, of 0.001 a.u. 
for Re and 20 cm -1 for we. 
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The column K.L. refers to the results obtained by K. Kirby and B. Liu [15] with 
Slater type functions for 64 valence states of C2. In their work, they used a 
"valence CI" carried out on all possible CSF that can be constructed within the 
valence orbital space, using the orbitals obtained after a MCSCF calculation 
with the dissociative configurations of the a 3IIu state. This kind of CI should 
give an accurate value of internal correlation energy plus polarization energy. 
These results can then be compared to our MClim(ext)/CI(ext) calculations and 

ECORR calculation. can help us in the discussion of the quality of the NI 

Indeed the following observations can be made from the comparison of the 
results obtained for the two states by K.L. and by us at the MClim(eXt)/CI(ext) 
level: 

(1) the equilibrium geometries are nearly the same, i.e. they are larger than the 
experimental values 
(2) the ~oe values are also quite similar though slightly better in K.L.'s work 
(3) the dissociation energies are of course too small since only a part of the 
correlation energy has been included. These observations allow us to discuss the 

Of ECORR. The equilibrium improvements due to the introduction of an evaluation N~ 
geometries are now really close to the experimental data and our spectroscopic 
constants are slightly improved although they are not necessarily better  than 
those of K.L. This could be interpreted by the fact that the introduction of 
j~NI CORR shifts the minimum of the curve to smaller internuclear separations but 
doesn' t  improve its shape in a decisive manner. The second main amelioration 
lies in the energy results. The dissociation energies are nicely reproduced. A 
slight excess is observed in the singlet and a defect in the triplet state. This leads 
to a term energy that is overestimated. However,  the two states are calculated 
in the right order. 

The same parameters were calculated with the MCo(ex t ) /C I (min )+E~Rg  
method. The same conclusion can be drawn as above. However,  the excess of 
internal correlation energy due to the use of a minimal basis set deforms the 
shape of the curve and gives rise to overestimated dissociation energies which 
however remain within acceptable limits. This excess doesn't  change drastically 
the term energy of the a 3IIu state, since it is present in the two states. 

The dissociation curves of the two states calculated at the level 
MC0(ext)/CI(min) NI nt-~'CORR are  plotted in Fig. 6. 

Finally, let us compare the dissociation energy values obtained for the 1 ~  state 
using several approximations: 

(1) SCF(ex t ) /CI (min )+E~RR (B) = 5.96 eV [1] 
(2) MClim(ext)/CI(ext) +ENIRR(A): 6.53 eV 
(3) MCo(ext)/CI(min) + E ~ R R  (A): 6.77 eV 

These values are to be compared to the experimental value: 6.33 eV. The most 
accurate calculation 2) gives of course the best result. Nevertheless the easiest 
and cheapest method 1) gives a worthwhile result although, as has been written 
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2. t.. 6. 8. 
Fig. 6, Potential curves of the C2 molecule calculated at the MCo(ext)/CI(min)+ENIRR level 

above, this method doesn't allow to calculate the whole potential curve. This is 
possible with the intermediate method 3) which provides us with a satisfying 
result also. 

4.3.3. The HCN and CN Molecules 

HCN is the largest system that has been considered here. For this molecule, as 
well as for CN, the approximate MClim(ext)/CI(ext) calculation of the internal 
correlation energy can still be used although it becomes quite expensive. We 
have only derived here the dissociation energies of HCN and CN for the two 
following processes: 

(a) HCN(IZ +) ~ CN(2S, +) + H(2S) 
(b) CN(ZZ +) ~ C(3p) + N(48) 
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These two reactions also allow us to derive the atomization energy of HCN: (c) 
HCN(1E +) ~ C(3P)+ N(4S)+ H(2S). All these values calculated at the two levels 
of approximation MClim(ext)/CI(ext) +ENIRR (A) and MCo(ext)/CI(min) + 
E NICoRR (A) are compared to the values obtained with the method 
SCF(ext)/CI(ext) N1 +EcoRR (B) and to the experimental data in Table 5. For the 
first two methods the total energies have been calculated at the 6-31G equilibrium 
geometries and at large internuclear separation. For the reasons explained above 
it is not possible to perform a calculation at large distance with the method 
SCF(ext)/CI(min) so that for this entry the energy at the dissociation limit is 
the sum of the total energies of the dissociation products at their 6-31G equili- 
brium geometries. The experimental dissociation energy of HCN has been 
derived from a thermochemical cycle where the heat of formation of CN has 
been introduced. Since the latter is still controversal in the literature we have 
selected two of the available values [16, 17]. This leads of course to two values 
for De (HCN) also. 

The results are all in good agreement with the experimental values whatever 
method is used. The fact that the results are of the same accuracy for HCN and 
CN is rather interesting. Indeed, in the case of CN a C--N bond is broken. This 
process involves a greater electronic rearrangement than that of HCN where 
only a CH bond is broken. This means that the contribution of the internal 
correlation energy to the dissociation energy is evaluated to the same accuracy 
in simple or in complicated cases. This allows us to derive atomization energy 
values which are of course of the same quality as for the two preceding cases. 

5. Conclusions 

In this work, we have presented an extension of a method of calculation of 
the molecular correlation energy, developed in previous work. This method 
was based on a partition of the correlation energy into an internal and a non- 
internal part. The extension tends to generalize the method to be applied to a 
multiconfigurational zeroth-order wavefunction. This improvement offers the 
possibility to calculate whole potential energy curves or hyperfaces describing 
processes which involve configuration changes (dissociation processes, chemical 
reactions etc.). 

Several tests have demonstrated the efficiency of MC/CI procedures and par- 
ticularly that of the inexpensive MCo(ext)/CI(min) calculations which combine 
economically minimal and extended basis sets. 

To overcome some shortcomings inherent to the population analysis approach 
of the non-internal correlation, we have developed an alternative method based 
on the LCAO expansion of the wavefunction. This new approach presents the 
advantage of preserving the L.S. coupling information concerning the atomic 
components deriving from the decomposition of the molecular structure and 
therefore is applicable to multiconfigurational functions. 
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The results obtained in this way for the ground state and some excited states of 
the NH, C2, HCN and CN molecules have been shown to be in good agreement 
with the corresponding experimental and elaborate CI results. They concern 
energy properties (dissociation energies and term energies) as well as geometric 
properties (equilibrium internuclear separations and vibrational frequencies) 
which are related to the correct shapes of the potential curves. 

We think therefore that the method proposed here can provide an economic 
method to calculate potential energy surfaces of good quality for non trivial 
systems, which may be larger than the test molecules treated in this work. 
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for a "action de recherche concert6e" and to the Brussels University Computing Center. They also 
thank Prof. G. Verhaegen for helpful discussions. 

Appendix 1 

Zeroth-order wavefunctions for the molecules studied here (="dissociative" 
configurations) 

The number of cartesian SAAP'S (fundamental plus those ones which do not 
vanish at large interatomic separation) is given in the third column. This gives 
the size of our zeroth-order MCSCF wavefunctions 

Number of 
cartesian 

Molecule Configurations SAAPS Products 

NH(3s  - ) lo'22o-2{3o'2 l~r 2 + 4o'21 ~r 2 + 3o'4o- 17r 2} 3 N(4S) + H(2S) 
NH(1A) 1 o.22o.2{3o 21,n.2 + 4o.21 ,/7.2 + 3o"4o"17T 2} 6 N(2D ) + H(2S) 
N H ( I s  + ) 1 o'22o'2{3o'21-n'2 + 4o'21 rr 2 + 3cr4o- l'n'2} 6 N(2p) +H(2S)  
H C N C s  +) lo'22o- 23 cr 24o'2 l'n" 4(5 o-2 + 60 -2 + 5o'60-) 3 0N(2s  +) + H(2S) 
CN ( 2.Y., + ) 1 cr 22o-23o'24o'2(1"n'45o- + 1 ~22rr  25o" ) 2 C(3p) + N(4S) 
02(1~,g) 2 2 2 2 2 2 2 2 2 2 lo" g2o'glo'~2o'~{3 o'g~r ~ + 3o" ~Ir g+ 3o-~r ~ 14 C(3p) + C(3p) 

2 2 4 4 2 2 + 30"u~" ~ + ~r. + ~r~+ ~r u~" e} 
2 2 2 2 3 3 2 ltY g2O" g 1 o" u2o'.{~ u3O'g 10 + ~r g3o- u + ~u'lrg3o'u 

2 + ~r g~r~ 3~rg 

C2(a 3Inlu) C(3p) + C(3p) 

Appendix 2 

We develop here, as an example of the formalism presented in Sect. 2.4.2, the 
LCAO expansion of the monodeterminantal Ilcr22crl wavefunction of LiH + over 
a three-component {lSLI, 2SLy, lSH} basis set. 

Let us suppose the following L.C.A.O. expression of the MOs: 

lo-= a lSLi+b 2SLi+C lSH 

20" = d  lSLi+e 2SLi+f lSu. 
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C 3 There  are 3 possible combinat ions  of  a spinorbitals ( 2 )  and 3 of/3 spinorbitals 
(C 3) leading to the nine dia tomic de terminants  't~pq listed in table 6 together  
with their respective weights dvq, calculated as the p roduc t  of two determinants .  
The  third co lumn of the table gives the ~pqs'  r eo rdered  on separa ted  Li and H 
atoms. 

The  consequent  changes of sign resulting f rom orbital pe rmuta t ion  are listed in 
the four th  column.  Finally, the last co lumn gives the linear combinat ions  of 
a tomic  eigenfunct ions that  arise f rom each of  the dia tomic determinant .  

The  contr ibut ions to a given (ML, Ms) state of each a tom that  arise f rom different 
q~pq in a given superposi t ion of a tomic  configurations must  be r eg rouped  before  
taking the squa' e of the coefficients, since there  is a linear t ransformat ion  be tween  
the set of  the possible determinants  of an a tomic configurat ion and the states 
arising f rom it. If this sum is not  pe r fo rmed  prior  to taking the square of the 
coefficient the L-S coupling informat ion is lost. The  non- in terna l  correlat ion 
energy  of L iH + will therefore  be the superposi t ion of the non- in terna l  a tomic  
correlat ion energies cor responding  to these eigenstates weighted by the squares  
of the coefficients. 
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